GWVRNwPVnyW3zNGouzQOgJPpmmJMUF99-qkI8Q7JqPA

【分散投資】VTは分散投資ではない?リスクに備える銘柄とは?

【分散投資】VTは分散投資ではない?リスクに備える銘柄とは?

SOSEKIです。

年明けから、上げたり下げたり、騒がしい相場が続いていますね。2017年、2018年前半と上昇相場が続いているので、こういったボラティリティの高い相場を、特にはじめて経験する場合、慌ててしまう投資家の方も多いのではないでしょうか。

とはいえ、我々は長期的な視点で資産形成をしていかなければいけません。では、こういった投資環境の時に、何に投資すればよいのでしょうか。最近はずっとそのことばかり考えています。

そういえば先日、こういうひとこまがありました。投資について話している時、アメリカ株は下がるかもしれんね、と話していたところ、「でもVTであれば、全世界に投資できるから、リスク分散になる。それを選べばいいんでしょ?」と言われました。確かにVTであれば、全世界の株式に投資できることは事実です。そのため、VTや、投資信託で言うと、emaxis slim 全世界株式なんかも人気ですね。ただし、リスクの分散という観点で、こういった商品は本当に万能なのでしょうか。再度整理しておきたいと思います。

分散とは、値動きが違うものを組み合わせることで効果が出る

・全世界株式は、実は金融商品という観点では、分散度合いが低い

・本当に分散させるなら、債券やコモディティと組み合わせるべき

リスクの分散とは、どういうことか

まず、リスクの分散とは、どのようなことを指すのかについて、きわめて簡単に整理してみましょう。

1つ例にとります。Aという金融商品があります。Bという金融商品があります。BはAの半分の値動きになります。(Aが1%動いた時、Bは0.5%動きます。)この場合、AとBを買うことは、リスク分散になるでしょうか。(MIX1)

もう1つ例をあげましょう。Aという金融商品があります。Bという金融商品があります。BはAと同じ値動きをしますが、四半期遅れて同じ値動きをします。この場合、AとBを買うことは、リスク分散になるでしょうか。(MIX2)

実は、この2つ(MIX1とMIX2)は同じような値動きをします。グラフを重ねてみましょう。

確かに、結果だけ見ると、同じようなパフォーマンスになっているので、どちらを選ぼうと大差ない、と思う人がいるかもしれません。しかし、統計の観点から見ると、この2つは大きくことなります。

リスクの計測に重要な「β値」とは?

リスクを計測するのに重要な指標として、「β値」というものがあります。β値とは、あるデータとあるデータの相関を表す指標で、-1~1の間で表されます。1に近ければ近いほど正の相関が強く、-1に近ければ近いほど負の相関になります。

※神谷さんからご指摘いただきました。相関係数は1〜-1の範囲ですが、β値の絶対値は1を超えることがあります。MIX1の例ならAとBの相関係数は1で、Aを基準としたBのβ値は0.5になり、Bを基準としたAのβ値は2になります。

投資におけるβ値は、市場平均に対する個別銘柄やETFの感応度を示す指標で、日本語では「市場感応度」と呼ばれます。米国株では、市場平均は「S&P500」が使われることが多いです。S&P500に対して、値動きが大きいか小さいかを測る指標です。S&Pの値動きと同じような値動きをすれば、β値が1に近ければ近いほど、S&P500と同じような値動きをする、ということになります。逆に、1から遠ければ遠いほど、全く逆の動きをすることになります。

株式におけるリスク分散とは、互いに相関の低い、または逆相関のリスクを組み合わせることで、全体のリスクを軽減させることになります。よって、β値が0に近い、またはマイナスのものを選ぶことが、株式投資における分散になります。

ちなみにMIX1の場合、β値は0.9、MIX2の場合、β値は-0.1になります。というわけで、リスク分散の観点からは、MIX2を選ぶことが、正しいと言えるでしょう。

VTは本当にリスク分散されているのか?

では、VTは本当にリスク分散されているのでしょうか。β値の観点で見てみましょう。

VTという商品は、世界各国の株式市場に分散投資しています。分散している国は以下の通りです。だいたい、米国;先進国:新興国に対し、55:35:10の割合で投資をしています。

米国に投資するETFとしてはVTI、先進国に投資するETFとしてはVEA、新興国に投資するETFとしてはVWOがあります。VTと合わせて、市場平均(S&P500)に対してのβ値を見てみましょう。(2018年の実績値から)

VT VTI VWO VEA
0.88 0.98 0.88 0.72

このように、VOOとVTは、0.88と、かなり強い正の相関を見せています。統計的には、これでは分散したとは言えません。VOOとVTIが0.98なのは理解できますが、面白いのはVEAのほうが、VWOに比べて相関係数が低いということですね。もちろんこれは過去1年だけを切り取っているので、この数字がすべてとは言えません。しかし、株式市場は、昨今、一つの相場が下がれば、連鎖的に他の市場も下がることが多くあります。そのため、リスク分散という観点では、株式市場だけでは、リスク分散は難しくなっていると言えるでしょう。

リスク分散を目指したポートフォリオとは?

では、どういうポートフォリオが、リスク分散しているといえるのでしょうか。代表的な株以外の商品として、米国債券(BND)、金(GLD)、新興国債券(VWOB)、REIT(IVR)のβ値をそれぞれみてみましょう。

VT VTI VWO VEA BND GLD VWOB IVR
0.88 0.98 0.88 0.72 -0.04 -0.04 0.10 0.43

こうしてみると、金や債券は、ほぼ相関なしの動きをしていることがわかります。REITも相関度合いは低いですね。

よって、こういった、株式以外の商品と、株式を組み合わせることは、リスク分散という観点では、有効であるといえるのではないでしょうか。

実際、株式:債券=3:2が、最もリスクとリターンのバランスが良い、というレポートもあります。(気になる方は調べてみてください。)このように、株式と債券、株式と金などの組み合わせは、リスク分散として有効だと言われています。

私自身も、債券や金に分散して投資しています。こういった荒れた相場の時こそ、リスク分散、β値を意識して、ポートフォリオを作っていきたいですね。

それではごきげんよう。

にほんブログ村 株ブログ 米国株へ
にほんブログ村